Parameters Optimization for Improving ASR Performance in Adverse Real World Noisy Environmental Conditions

نویسندگان

  • Urmila Shrawankar
  • Vilas M. Thakare
چکیده

From the existing research it has been observed that many techniques and methodologies are available for performing every step of Automatic Speech Recognition (ASR) system, but the performance (Minimization of Word Error Recognition-WER and Maximization of Word Accuracy RateWAR) of the methodology is not dependent on the only technique applied in that method. The research work indicates that, performance mainly depends on the category of the noise, the level of the noise and the variable size of the window, frame, frame overlap etc is considered in the existing methods. The main aim of the work presented in this paper is to use variable size of parameters like window size, frame size and frame overlap percentage to observe the performance of algorithms for various categories of noise with different levels and also train the system for all size of parameters and category of real world noisy environment to improve the performance of the speech recognition system. This paper presents the results of Signal-to-Noise Ratio (SNR) and Accuracy test by applying variable size of parameters. It is observed that, it is really very hard to evaluate test results and decide parameter size for ASR performance improvement for its resultant optimization. Hence, this study further suggests the feasible and optimum parameter size using Fuzzy Inference System (FIS) for enhancing resultant accuracy in adverse real world noisy environmental conditions. This work will be helpful to give discriminative training of ubiquitous ASR system for better Human Computer Interaction (HCI).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Method for Automatic Speech Recognition Performance Improvement in Real World Noisy Environment

It is a well known fact that, speech recognition systems perform well when the system is used in conditions similar to the one used to train the acoustic models. However, mismatches degrade the performance. In adverse environment, it is very difficult to predict the category of noise in advance in case of real world environmental noise and difficult to achieve environmental robustness. After do...

متن کامل

Reduced complexity equalization of lombard effect for speech recognition in noisy adverse environments

In real-world adverse environments, speech signal corruption by background noise, microphone channel variations, and speech production adjustments introduced by speakers in an effort to communicate efficiently over noise (Lombard effect) severely impact automatic speech recognition (ASR) performance. Recently, a set of unsupervised techniques reducing ASR sensitivity to these sources of distort...

متن کامل

An Adaptive Methodology for Ubiquitous ASR System

Achieving and maintaining the performance of ubiquitous (Automatic Speech Recognition) ASR system is a real challenge. The main objective of this work is to develop a method that will improve and show the consistency in performance of ubiquitous ASR system for real world noisy environment. An adaptive methodology has been developed to achieve an objective with the help of implementing following...

متن کامل

Cepstrum-domain acoustic feature compensation based on decomposition of speech and noise for ASR in noisy environments

This paper presents a set of acoustic feature pre-processing techniques that are applied to improving automatic speech recognition (ASR) performance on noisy speech recognition tasks. The principal contribution of this paper is an approach for cepstrum-domain feature compensation in ASR which is motivated by techniques for decomposing speech and noise that were originally developed for noisy sp...

متن کامل

Acoustic feature compensation based on decomposition of speech and noise for ASR in noisy environments

This paper presents a set of acoustic feature pre–processing techniques that are applied to improving automatic speech recognition (ASR) performance on the Aurora 2 noisy speech recognition task. The principal contribution of this paper is an approach for cepstrum domain feature compensation in ASR which is motivated by techniques for decomposing speech and noise that were originally developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1303.5513  شماره 

صفحات  -

تاریخ انتشار 2012